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ABSTRACT 
Machine learning [1], a branch of artificial intelligence, that gives computers the ability to learn without being 

explicitly programmed, means it gives system the ability to learn from data. There are two types of learning techniques: 

supervised learning and unsupervised learning [2]. In this paper, we describe what Extreme Learning Machine is, their 

advantages and limitations followed by a study of genetic algorithm. 
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     INTRODUCTION
Extreme Learning Machine (ELM) 

Initially, gradient-descendent based leaning algorithm such as, back propagation [10] was used to train feed-forward 

neural networks, but the learning speed of these networks was much slower than that was required by the applications. 

This was the major drawback of these algorithms and the major reason behind was that in these algorithms, all the 

parameters of network had to be tuned which increased the dependency between the parameters. 

 

Extreme Learning Machine (ELM)[7] is based on least square solution and was originally proposed for single hidden 

layer feed-forward network. In ELM, rather than tuning of all the parameters here, the weights between input and 

hidden neurons and the bias for each hidden neuron are assigned randomly. Here, hidden nodes may be sigmoid 

additive nodes or Gaussian kernel nodes. It requires that the activation function (which provides mapping between 

input and hidden neurons) to be infinitely differentiable (such as sigmoidal, Radial Basis, exponential, Sin etc) because 

if activation function is infinitely differentiable then the learning parameter can be assigned randomly [7]. The 

classification rate of ELM is dependent on the Number of hidden neurons (NHN). For a particular hidden neuron value 

the accuracy of ELM is best, if NHN are increased or decreased further the accuracy of ELM is reduced due to 

overfitting problem. The complexity of ELM is directly proportional to NHN if NHN value are higher the complexity 

of the ELM will be higher. Hidden node parameters are randomly taken and output node parameter is calculated using 

Moore-Penrose inverse [8][9].This algorithm is thousand times faster than past learning methods such as, back 

propagation and also reaches the smallest training error. Due to these features, generalization performance of this 

algorithm is also good.  

 

We have given training data in the form of (x, t). Now we consider N=Number of training samples, n=Number of 

Input neurons=Number of features, L= Number of hidden neurons (NHN) and m=Number of output neurons and two 

variable q and p where q= 1…. L and p=1…..N. The pth sample is (xp,,tp) where xp=[xp1,xp2,……….,xpn]t  ϵ Rn 

and  tp=[tp1,tp2,……….,tpm] ϵ Rm. bqis the bias for the qth hidden neuron, wq is the input weight connecting  input 

neurons and qth hidden neurons where wq= [wqi, wqi,…, wqn]T, βq the Output weight for layers connecting  all hidden 

neurons and rth  output neuron  where 

 

βr = [β1r , β2r , ..., βLr ]
T 

 r=1,2,.....m. 

H = hidden layer output matrix and g(wi . x + bi ) is the Activation function 

Activation function g(x) with L hidden nodes is defined as 




L

q 1

βq  . gq(xq)=


L

q 1

βq  . g(wq . xp+bq) =op             (1) 

for p=1,2,3,……….N 
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With Activation function g(x) and L hidden nodes SLF’s can approximate these N samples with zero error 

i.e. 


L

p 1

||op-tp||=0                                                      (2) 

Thus, we can say that there exist wq,bq and βq such that, 




L

q 1

βq  . g(wq . xp+bq)=tq     for p=1,2,3………N 

With the help of (1) and (2) we can also show the above equation as 

Htrainβ=Ttrain                                                             (3) 

Where Htrain =
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When the input weights (wq) and hidden layer biases (bq) are determined then output weight βq is calculated 

as: 

HT
train  Htrain β = HT

train Ttrain 

β = (HT
train

  /HT
train Htrain ) Ttrain 

β= pinv(Htrain)Ttrain 

or                                         TH   

Where 
H is the Moore-Penrose generalized inverse of matrix H. 

According to the perspective of evaluation the samples are divided in the training and the testing sets. The 

training sets are used to first get the value of the output weight (β). The output weight calculated is used to 

classify the test patterns using the following equation 

𝐻𝑡𝑒𝑠𝑡  β = 𝑌𝑡𝑒𝑠𝑡 

Ltest(n x 1), output label of n testing instances is determined using this equation.  

𝐿𝑡𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑟𝑜𝑤 (𝑌𝑡𝑒𝑠𝑡) 

The arg function returns the index of the maximum value for each row of Ytest. 

  

FEATURE MAPPING IN ELM 
According to ELM theory  any nonlinear piecewise continuous activation function satisfying some condition can be 

used for feature mapping. ELM can approximate any function and solve any classification problem. ELM hidden node 

is not limited to additive or radial basis function type rather it can be any non linear piecewise continuous hidden node. 

So ELM extends from SLFN to generalized SLFN which can implement any feature mapping function following 

above condition. Some examples of feature mapping function are: Sigmoid function, Gaussian functions, Hinging 

function, Ridge Polynomials etc.  

 

Extreme learning machine is generalized single layer feed forward network. Here generalized means ELM can use 

large variety of feature mapping function (hidden output function). Almost all nonlinear piecewise continuous 

functions can be used as the hidden-node output functions and hence various types of hidden node output function can 

be used in ELM. In general hidden node output can be written as: 
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where ),,( xbaG is a nonlinear piecewise continuous function satisfying ELM universal 

approximation capability theorems and  L

iii ba
1

,


 are randomly generated according to any 

continuous probability distribution. Some example of feature mapping function satisfying above 

condition is given below. 

 

               1) Sigmoid function   

)).(exp(1
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),,(

bxa
xbaG
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2) Hard-limit function 
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3) Gaussian function  
2

),,( axbxbaG   

4) Multiquadric function  

2122
)(),,( baxxbaG   

 

 

Limitation of Extreme Learning Machine 

Although extreme learning machine is a faster algorithm in comparison with traditional learning algorithm, but 

disadvantage of ELM is that it takes into consideration only balanced data; means data where distribution of 

instances between classes is equal. But now a days, due to imbalanced datasets ELM is unable to make proper 

classification. 

 

Regularized Extreme Learning Machine 

Regularized extreme learning machine  uses ridge regression theory, a positive value is added to the diagonal 

of HH T
or

THH . The positive value is called regularization parameter. This parameter is trade off between 

maximizing marginal distance and minimizing least square error. Solution obtained using this method is more 

stable and robust, also provide good generalization performance. After applying regularization parameter least 

square solution can be analytically derived using Moore-Penrose generalized inverse. Here C is added for better 

generalization performance. Optimization method can also be used to get above solution for  . Similar to 

SVM we can formulate optimization function for ELM in which our aim is to minimize cumulative error 

),(
1

THi

N

i

i 



 

where 
T

imiii ][ 21   error vector corresponding to 
thi sample and to maximize marginal 

distance. 

 

Maximizing marginal distance is equivalent to minimizing norm output weight  . Optimization function can 

be written as: 
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Here C is regularization parameter which acts as trade-off constant between maximizing marginal distance and 

minimizing cumulative error. Solution of above problem using KKT condition is: 
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Weighted Extreme Learning Machine (WELM) 

Weighted extreme learning machine is proposed to deal with imbalanced data. Initially, popular classifiers 

assume that data is balanced, which degrades performance because equal weightage is given to both the classes. 

It provides proper classification for majority class but minority class samples become misclassified. 

 

WELM determines what degree of re-balance is required and according to the determined re-balance, assigns 

different misclassification cost for each instance, but for simplicity these algorithms choose a weighing scheme 

which is automatically generated from the class information. In Weighted Extreme Learning Machine, a weight 

matrix is generated automatically according to the class distributions, which are inversely proportional to the 

number of instances in the training data. So weight assigned to majority class is always lesser than weight 

assigned to minority class. Weighted Extreme Learning Machine can be termed as extreme learning machine 

with weight matrix and regularization parameter. Regularization parameter is used to represent trade-off 

between maximizing marginal distance and minimizing misclassification error cost/value. WELM is also faster 

learning algorithm because it takes all the advantages of extreme learning machine.  

 

Training samples are given in the form of (xi, ti) where, xi ϵ Rn and ti is either -1 or +1 for i=1…….N and n= 

number of features in each training sample. Define a NxN diagonal weight matrix for each training sample xi 

where, weight assigned to minority class is always greater than weight assigned to majority class. wpj = Input 

weight (for p=1….L,j=1….n) between n input nodes and L hidden layer nodes and bp =bias (for p=1…L) at 

each hidden layer node are randomly generated between 0 and 1. hp= wpjxp + bp =Hidden layer node output. 

Output layer node output is yi =h1(xi)β1 + h2(xi) β2 +….+hL(xi) βL= h(xi)β  and output in vector form is Y = Hβ. 

Target output is T = t1, t2,..................,tN. Since it is a binary classifier so there is only one output node. Error 

vector is ξ = Y-T = H β-T. Output weight should be such that the marginal distance is maximum for better 

generalization performance. So, for maximizing marginal distance and minimizing error vector we can model 

optimization function as 

Minimize: 



N

i

iCWf
1

22

2

1

2

1
                                  (4)

 

Subject to:
T

i

T

ii txh  )( , for i=1,2,………N                   (5)
 

 

According to Karush-Kuhn-Tucker theorem[14] the optimization problem is equivalent to eq.(5) is 
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Where αi is lagrange multiplier. For obtaining optimality condition for KKT Theorem, partial derivation is 

done with respect to variables β,   and α  
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By equation (8) and (9) we get 

][  HTCW                                                                   (10) 

By eq.(10) we put value of   into eq.(7) 
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After divide numerator and denominator by C, we get 
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     When N is large              

      

(11) 

When N is small then value of  can be obtained like this 

By eq.(8) we get 

 CW  

Put value of  from eq. (9) 

][  HTCW                                                                    (12) 

put value of  in eq.(12) 

][  THHTCW   

] TCWHHCWT   

CWTCWHHT    

Take C common from both sides 

WTWHH
C
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Weight determination in WELM 

In weighted ELM, two schemes for weighing misclassification are given. Minority misclassification weight is 

given as inverse of total minority samples and majority misclassification weight is given as inverse of total 

majority samples. 

)$(

1

)$(

1

Majority
Wand

Minority
W MajorityMinority   

 

Where, $(minority) is the number of samples belongs to minority class and $(majority) is the number of sample 

belongs to majority class. 

 

In other scheme, minority misclassification weight is given as inverse of number of minority samples multiplied 

by 1 and majority misclassification weight is given as inverse of majority samples multiplied by 0.618. 

)$(

618.0

)$(

1

Majority
Wand

Minority
W MajorityMinority   

Here, minority misclassification weight is always greater than majority misclassification weight which causes 

proper positioning of classification boundary and hence determines good generalization performance. 

 

Limitation of Weighted Extreme Learning Machine 

In Weighted ELM weights assigned to binary class, generate according to the number of instances, which creates 

dependency of WELM on number of instances. 

 

EVOLUTIONARY ALGORITHM  
In an optimization algorithm, a number of possible solutions to a problem are available and the task is to find the best 

solution possible in a fixed amount of time. For a search space with only a small number of possible solutions, all the 

solutions can be examined in a reasonable amount of time and the optimal one found. This exhaustive search, however, 

quickly becomes impractical as the search space grows in size. Traditional search algorithms randomly sample (e.g., 

random walk) or heuristically sample (e.g., gradient descent) the search space one solution at a time in the hope of 

finding the optimal solution. The key aspect distinguishing an evolutionary search algorithm from such traditional 

algorithms is that it is population-based. Through the adaptation of successive generations of a large number of 

individuals, an evolutionary algorithm performs an efficient directed search. The advantages include the simplicity of 

the approach, its robust response to changing circumstances, and its flexibility. Process of EA is shown in Fig: 2.1. 

 

Among the evolutionary techniques, the genetic algorithms (GAs) are the most extended group of methods 

representing the application of evolutionary tools. They rely on the use of a selection, crossover and mutation 

operators. Replacement is usually by generations of new individuals. 
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Comparison with Particle Swarm Optimization: In comparison with genetic algorithms (GAs), the information sharing 

mechanism in PSO is significantly different. In GAs, chromosomes share information with each other. So the whole 

population moves like a one group towards an optimal area. In PSO, only gbest (or lbest) gives out the information to 

others. It is a one -way information sharing mechanism. The evolution only looks for the best solution. Compared 

with GA, all the particles tend to converge to the best solution quickly even in the local version in most cases. The 

main difference between the PSO approach compared to EC and GA is that PSO does not have genetic operators such 

as crossover and mutation. Particles update themselves with the internal velocity; they also have a memory that is 

important to the algorithm. Compared to GAs, the advantages of PSO are that PSO is easy to implement and there are 

few parameters to adjust. 

 

Genetic Algorithm 

In nature, an individual in population competes with each other for virtual resources like food, shelter and so on. Also 

in the same species, individuals compete to attract mates for reproduction. Due to this selection, poorly performing 

individuals have less chance to survive, and the most adapted or “fit” individuals produce a relatively large number 

of offspring’s. It can also be noted that during reproduction, a recombination of the good characteristics of each 

ancestor can produce “best fit” offspring whose fitness is greater than that of a parent. After a few generations, species 

evolve spontaneously to become more and more adapted to their environment. 

 

Genetic algorithm is also based on the same concept. It is a well known probabilistic global search and optimization 

method which is based on principle of evolution. The strength of GAs is in the parallel nature of their search. Through 

genetic operators, even weak solutions may continue to be part of the makeup of future candidate solutions. The 

genetic operators used are central to the success of the search. All GAs require some form of recombination, as this 

allows the creation of new solutions that have, by virtue of their parent’s success, a higher probability of exhibiting a 

good performance. In practice, crossover is the principal genetic operator, whereas mutation is used much less 

frequently. Crossover attempts to preserve the beneficial aspects of candidate solutions and to eliminate undesirable 

components, while the random nature of mutation is probably more likely to degrade a strong candidate solution than 

to improve it.                             

 

Search Space 

Most often one is looking for the best solution in a specific set of solutions. The space of all feasible solutions (the set 

of solutions among which the desired solution resides) is called search space (also state space). Each and every point 

in the search space represents one possible solution. Therefore each possible solution can be “marked” by its fitness 

value, depending on the problem definition. With Genetic Algorithm one looks for the best solution among a number 

of possible solutions represented by one point in the search space i.e.; GAs are used to search the search space for the 

best solution e.g., minimum. The difficulties in this ease are the local minima and the starting point of the search.  

 

Here, basic genetic algorithm is shown which is based on "survival of fittest" concept, which means, fittest individuals 

dominating over the weaker ones. We can show the optimization problem like this: 

 

)(max xf
Xx

                                                                           (13) 

 

Where X is search space and f is objective function, RXf : . Genetic algorithm does not work with problem 

(13) directly, but with coded version of it. Search space X is mapped into set of string S. 

 

Function SX    is called coding function, which have to be specified depending on the needs of the actual problem. 

 

Usually, S is finite set of binary strings: 

 

http://www.ijesrt.com/


[Sharma, 4(3): March, 2015]   ISSN: 2277-9655 

                                                                                                 Scientific Journal Impact Factor: 3.449 

   (ISRA), Impact Factor: 2.114 
   

http: // www.ijesrt.com                  © International Journal of Engineering Sciences & Research Technology 

 [724] 
 
 

 

mS }1,0{  

                                                                   

Where m is length of string. Generally simple binary code is used. 

 

In the process of evolution, Genetic Algorithm takes a number of binary strings of finite length as initial population 

and each individual is associated a fitness value corresponding to the fitness of the solution it represents. This fitness 

value is assigned by fitness function. Fitness value is the evaluation of how good the candidate solution is.  

 

Genetic Algorithm ranks individuals according to their fitness value, then selection is carried out which select 

individuals with best fitness value and delete the not so good specimens. These individuals with high fitness can be 

termed as promising candidates. These promising candidates are kept and allowed to reproduce by crossover. From 

them multiple copies are made, but the copies are not perfect; random changes are introduced by mutation during the 

copying process. These offspring’s then go on to the next generation, forming a new pool of candidate solutions, and 

those candidate solutions which were worsened, or made no better, by the changes to their code are again deleted.  

 

These steps are repeating for each generation. Let m is space dimension and l is length of each binary string, pc is 

crossover probability, pm is mutation probability and n is population size. Here, stopping criteria is number of 

generations which is defined by the user. In each generation t, n binary strings are present which will be denoted by 

 

Bt = (b1,t ,b2,t ,……,bn,t) 

 
Table 2.1 Basic Genetic Algorithm 

Basic structure of Genetic algorithm is shown here : 

t=1; 

Compute initial population B1; 

While stopping criteria is not fulfilled DO Begin 

     for i=1 to n DO 
             Select best individual bi,t+1 from Bt  according to fitness value 

                              for i=1 to n DO 

                      With probability pc perform crossover of  bi,t+1 and bi+1,t+1 
                             for i=1 to n DO 

                                 With probability pm eventually mutate bi,t+1 

                             end 

                 end 
       end 

t=t+1; 

end 

 

 

GENETIC PARAMETERS 

 Selection 

 

Selection  mechanism determines which and how many parents to select, how many offspring to create, and 

which individuals will survive into the next generation. In Selection, comparison of each individual in the 

population takes place on the basis of a fitness function. Each individual has an associated value corresponding 

to the fitness of the solution it represents. The fitness is the evaluation of how good the candidate solution is. 

The optimal solution is the one which maximizes the fitness function. Types of selection are as follows:     

 

Remainder Selection 

The Stochastic Remainder Sampling has identical concepts used in the deterministic sampling and the population must 
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be formed with the integer part of the expression result api/apavg. In this case, free places were filled based on the 

Roulette method. In Remainder Selection Mechanism, expected number of copies of a string is calculated as mi = fi/f. 

It assigns parents deterministically from the integer part of each individual's scaled value (mi), and then uses roulette 

selection on the remaining fractional part. For example, if the scaled value of an individual is 2.3, that individual is 

listed twice as a parent because the integer part is 2. After parents have been assigned according to the integer parts 

of the scaled values, the rest of the parents are chosen stochastically. The probability that a parent is chosen in this 

step is proportional to the fractional part of its scaled value. 

 

 
Figure2.2: Flowchart of Genetic Algorithm 
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Roulette wheel Selection 

In the Roulette wheel selection method [Holland, 1992]; the first step is to calculate the cumulative fitness of 

the whole population through the sum of the fitness of all individuals. After that, the probability of selection is 

calculated for each individual as being pseli = fi/Pfi. Then, an array is built containing cumulative probabilities 

of the individuals. So, n random numbers are generated in the range 0 to Pfi and for each random number an 

array element which can have higher value is searched for. Therefore, individuals are selected according to 

their probabilities of selection. 

 

Stochastic Uniform Selection  

Stochastic uniform lays out a line in which each parent corresponds to a section of the line of length 

proportional to its expectation. The algorithm moves along the line in steps of equal size, one step for each 

parent. At each step, the algorithm allocates a parent from the section it lands on. The first step is a uniform 

random number less than the step size. 

 

Tournament Selection 

Tournament selects each parent by choosing individuals at random, the number of which you can specify by 

Tournament size, and then choosing the best individual out of that set to be a parent. 

 

Uniform Selection 

In Uniform selection parents are selected at random from a uniform distribution using the expectations and 

number of parents. This results in an undirected search. 

 

Crossover  

Crossover is a process of taking more than one parent solutions and producing a child solution from them with 

some crossover probability. It is applied to the mating pool with the hope that it creates a better offspring. The 

basic parameter in crossover technique is the crossover probability (Pc). Crossover probability is a parameter 

to describe how often crossover will be performed. If there is no crossover, offspring are exact copies of parents. 

Types of crossover are: 

 

Single Point Crossover 

It chooses a random integer n between 1 and Number of variables, and selects the vector entries numbered less 

than or equal to n from the first parent, selects genes numbered greater than n from the second parent, and 

concatenates these entries to form the child.  

 

Two Point Crossover 

Two point selects two random integers m and n between 1 and Number of variables. The algorithm selects 

genes numbered less than or equal to m from the first parent, selects genes numbered from m+1 to n from the 

second parent, and selects genes numbered greater than n from the first parent. The algorithm then concatenates 

these genes to form a single gene. 

 

Heuristic Crossover 

Heuristic creates children that randomly lie on the line containing the two parents, a small distance away from 

the parent with the better fitness value, in the direction away from the parent with the worse fitness value.  

 

Mutation 

Mutation functions make small random changes in the individuals in the population, which provide genetic 

diversity and enable the genetic algorithm to search a broader space. It occurs according to user-defined 

mutation probability (pm). 
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CONCLUSION 
This paper gives a brief overview about Extreme Learning Machine. There are lots of advancements going on in this 

specific domain. Continuous evolution in this area has added various dimensions in base atoms of concerned area. 

This study will be helpful for those working in the area Extreme Learning Machine. 
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